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SUMMARY The substantial discrepancy between the strong effects of functional
foods and various drugs, especially traditional Chinese medicines (TCMs), and the
poor bioavailability of these substances remains a perplexing problem. Understand-
ing the gut microbiota, which acts as an effective bioreactor in the human intestinal
tract, provides an opportunity for the redefinition of bioavailability. Here, we discuss
four different pathways associated with the role of the gut microbiota in the trans-
formation of parent compounds to beneficial or detrimental small molecules, which
can enter the body’s circulatory system and be available to target cells, tissues, and
organs. We further describe and propose effective strategies for improving bioavail-
ability and alleviating side effects with the help of the gut microbiota. This review
also broadens our perspectives for the discovery of new medicinal components.

KEYWORDS bioavailability, gut microbiota, host metabolism, nutrient and drug
outcomes, short-chain fatty acid

INTRODUCTION

Considerable attention has been paid to the substantial discrepancy between the
strong biological effects of some drugs and functional foods and the poor bio-

availability of these substances. Recent studies by Zimmermann et al. have opened the
door to a revolution in understanding the important roles of the gut microbiota in the
metabolism of many pharmaceuticals, which could lead to a possible redefinition of
bioavailability (1, 2).

For orally administered drugs and functional foods, bioavailability generally sum-
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marizes the quantity or proportion of the ingested dose that is directly absorbed in the
small intestine to enter the living system (into circulation) (Fig. 1) (3, 4). However, the
parent ingredients of compounds, especially many Chinese herbs and medicinal foods,
are difficult to detect in the circulatory system after oral administration, while many
Chinese herbs and medicinal foods have been proven to be efficient for thousands of
years. Troubleshooting and other strategies, such as modification of structures and
delivery systems, have been carried out to improve bioavailability in the small intestine,
but most of these attempts have been in vain. Recent great progress in studies on the
gut microbiota has shed light on understanding the discrepancy between the explicit
effects of parent compounds and low plasma concentrations. It has been reported that
the influence of intestinal commensal bacteria on the utilization of these compounds
might explain such a discrepancy (5–7).

Zimmermann et al. utilized a combination of germfree animals and Bacteroides
thetaiotaomicron transposon mutants deficient in enzymes that could convert brivu-
dine (BRV) to bromovinyluracil (BVU) as a pharmacokinetic paradigm to quantitatively
predict host and microbiome contributions to drug metabolic transformation. Aston-
ishingly, the contributions of the microbiome to the metabolism of some drugs are
much more than 50% (1). Chemical modifications of 271 oral drugs under microbiome-
encoded enzymes of 76 diverse gut bacteria were further identified as being the results
of oxidation, reduction, deacetylation, hydrogenation, hydroxylation, acetylation, and
propionylation, which changed the masses of metabolites with respect to the corre-
sponding parent drugs. This revealed causal links between the microbiota gene content
and interpersonal differences in drug metabolism and drug responses (2). In addition,
another model of a special population can demonstrate the roles of the intestinal
microbiota in the human body in the regulation of bioavailability. Ileostomists, first
reported by Hollman et al. in 1995 (6), are patients who have their colons surgically
isolated from their bodies. Ileostomists are ideal model systems for examination of the
absorption ratios of dietary substances in the human small and large intestines. During
the 24 h after ingestion of coffee, the ratio of the metabolites presented in the urine of
ileostomy patients to chlorogenic acid intake was 8% � 1%, while this ratio was
29% � 4% for the group consisting of healthy subjects (8). With the help of such a
model for humans, Stalmach et al. indicated that the absorption of chlorogenic acid in
instant coffee occurred in both the small and large intestines and that absorption
occurred primarily in the large intestine (9). Thus, the microbiota in both the small
intestine and colon should be considered to influence the bioavailability of foods or

FIG 1 General understanding of bioavailability: the ratio of the areas under the curves. iv, intravenous
administration; po, oral route; C, plasma concentration (in arbitrary units) (3, 4).
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drugs. Therefore, the classic conceptual framework of bioavailability needs to be
reexamined. The important roles of the gut microbiota in the metabolism of many
pharmaceuticals and foods have led to a possible redefinition of bioavailability. Here,
we summarize four pathways in the regulation of bioavailability by the gut microbiota
and present constructive proposals for the improvement of bioavailability based on
modulation of the gut microbiota.

THE GUT MICROBIOTA: A BIOREACTOR OF VARIOUS BIOACTIVE METABOLITES
FROM PARENT COMPOUNDS

A vast number of gut bacteria have colonized the human intestinal tract throughout
human history. These microbes are referred to as our second genome due to their high
abundance and vital role. The gut microbiota was found to be a strong regulator of
energy harvesting in 2004 (10); accordingly, these microbes have shown strong corre-
lations with processes such as lipometabolism (11–14), glycometabolism (15–18), in-
testinal infection (19–21), brain function (22–26), immunity (27–29), and tumorigenesis
(30–32). The gut microbiota is influenced by both genetic (33) and environmental (34,
35) factors, although the latter are more important than the former.

The gut microbiota can help hosts to digest ingested foods or drugs via enzymes
that are secreted only by bacteria and via the excretion of fecal energy. The main
metabolic reactions have been reported to be conducted by intestinal microbial
enzymes, including �-glucosidase, �-glucuronidase, azoreductase, sulfatase, nitrore-
ductase, and nitrate reductase (36, 37). Important biotransformations, including reduc-
tive metabolism, hydrolytic reactions, demethylation, deamination, dehydroxylation,
deacylation, decarboxylation, and oxidation, are considered to be conducted by specific
gut microbes (36, 38–40). Although the metabolites and related enzymes that partici-
pate in these biotransformations have been described for some reactions, an under-
standing of the roles of the enteric community of bacteria in these biochemical
reactions remains largely uncharacterized (41).

The intestinal microbiota has significant effects on the digestion of foods and the
synthesis of beneficial bioactive substances, such as short-chain fatty acids (SCFAs) (18,
42–44) and vitamins (45, 46), and detrimental molecules, such as lipopolysaccharides
(LPSs) (47, 48), branched-chain amino acids (BCAAs) (49), bile acids (50, 51), and
trimethylamine (TMA), the precursor of TMA N-oxide (TMAO) (52, 53). Therefore, despite
the direct effects of some substances on human health, many biological functions are
performed by small bioactive molecules transformed from either foods or drugs by the
gut microbiota. We propose that the intestinal microbiota has significant effects on the
formation of bioactive small molecules via four pathways (Fig. 2): the gut microbiota
biotransforms the parent functional foods and drugs directly into bioactive compounds
(pathway 1), nonparent components trigger the metabolism of the parent nutrients by
beneficial gut bacteria to produce additional beneficial molecules (pathway 2), the gut
microbiota is modulated by nonparent molecules to decrease the entry of detrimental
metabolites from the parent drugs or foods into the bloodstream (pathway 3), and specific
gut bacteria that can transform the parent drugs into inactive compounds are inhibited by
nonparent molecules to increase the entry of drugs into the circulatory system (pathway 4).
Notably, in pathway 1, the investigated components are the parent molecules, the metab-
olites of which are the bioactive molecules, and in pathway 4, the investigated compounds
are the bioactive components themselves. In contrast, in pathways 2 and 3, the investigated
compounds are the nonparent compounds that affect the bioavailability of the parent
compounds (frequently from the daily diet) via modulation of the gut microbiota. There-
fore, when discussing bioavailability, we should distinguish parent compounds from non-
parent compounds. Furthermore, the four pathways (especially pathways 1 and 2) are
seldom mutually exclusive and occur separately.

Most of the interactions between parent foods or drugs and the intestinal micro-
biota can potentially be classified into one of the above-described four pathways.
Therefore, it is crucial to reasonably improve the bioavailability of parent foods or drugs
effectively based on one of these four pathways to improve the therapeutic effects of
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these substances. Unquestionably, such a development would rapidly expand the
market for researchers and producers of functional foods and pharmaceuticals.

THE FOUR PATHWAYS: A BREAKTHROUGH IN THE SEARCH FOR THE EXACT
BIOACTIVE MOLECULES

The gut microbiota improves the bioavailability of the parent ingested substances
via four pathways to promote the therapeutic effects of these substances. These four
pathways also lay the foundation for subsequent breakthroughs in the search for
functional foods and new drugs. All the parent compounds, metabolites, and key gut
bacteria involved in the improvement of bioavailability mentioned in this review are
summarized in Table 1.

Pathway 1: Direct Biotransformation of Parent Compounds into Beneficial Meta-
bolites by the Gut Microbiota

An abundance of evidence has demonstrated that the gut microbiota can interact
with indigestible dietary compounds and herbal medicines, such as polysaccharides,

FIG 2 Four pathways by which the gut microbiota alters the bioavailability of food and medicine. (a) Pathway 1: direct biotransformation of parent compounds
to beneficial metabolites by the gut microbiota. (b) Pathway 2: increase of beneficial metabolites from parent compounds by specific gut bacteria enriched by
nonparent compounds. (c) Pathway 3: decrease of detrimental metabolites from parent compounds via modulation of the gut microbiota by nonparent
compounds. (d) Pathway 4: inhibition of specific gut bacteria transforming parent compounds into inactive forms by nonparent compounds.
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oligosaccharides, saponins, and phenolic compounds, directly transforming these mol-
ecules into more active compounds and improving their oral bioavailability (54–58).

Indigestible carbohydrates. Indigestible carbohydrates, including dietary fiber,
polysaccharides, and oligosaccharides, have been proven to be the active components
of a large number of pharmaceuticals and functional foods. However, these compounds
cannot be easily digested in the small intestine. Many studies have shown that the
important metabolites, SCFAs, are the primary final products of the fermentation of
polysaccharides or oligosaccharides by potential beneficial bacteria (59).

Dietary fiber has been reported to greatly enrich acetic acid- and butyric acid-
producing bacteria in a randomized controlled clinical study. Accordingly, the concen-
trations of these two SCFAs also increased during the intervention period. Alleviation
of type 2 diabetes mellitus (T2DM) was correlated with an improvement in the gut
microbiota, an upregulation of SCFA production, and increased serum glucagon-like
peptide 1 (GLP-1) and peptide YY (PYY) levels. Notably, an elevation of an index based
on mathematical modeling of the 15 SCFA producers could predict a reduction in
glycosylated hemoglobin (HbA1c, an important glycometabolism parameter), indicat-
ing significant roles of the SCFAs derived from beneficial gut bacteria during the
alleviation of T2DM (18).

Polysaccharides in medicinal and edible plants and in marine organisms not only are
metabolized to produce high levels of SCFAs but also reduce metabolic syndrome or
play immunoregulatory functions; in addition, these compounds exhibit improved
therapeutic effects in clinical applications via the enrichment of SCFA-producing gut
bacteria (60–63). For instance, polysaccharides from Ganoderma atrum might regulate
the gut microbiota, play a core role in the bioactive effects, and enhance the concen-
trations of SCFAs and secretory immunoglobulin A in the intestinal tracts of rats (62, 64).
Polygonatum odoratum polysaccharides can restore the composition of the impaired
intestinal microbiota of high-fat diet (HFD)-fed rats to that of the control group by
increasing the abundance of SCFA-producing bacteria, which is correlated with an
improvement in obesity parameters (60). Cordyceps sinensis polysaccharides signifi-
cantly enhanced butyrate levels produced by the gut microbiota and not only im-
proved histone H3 acetylation, mediating modulatory T (Treg) cell-specific Foxp3, but
also markedly reversed the increases in interleukin-17 (IL-17) and IL-21 levels induced
by cyclophosphamide in mice (62).

Oligosaccharides exhibit considerable modulatory effects on the gut microbiota,
leading to the production of various SCFAs and a favorable influence on metabolic
disorders and colonic motility. For example, fructo-oligosaccharide (FOS), galactose-
oligosaccharide (GOS), and isomaltose-oligosaccharide (IMO) treatments increased the
levels of SCFA-producing bacteria, including Lactobacillus and Bifidobacterium (65).
SCFAs such as butyric acid could rectify motility in germfree mice (66), possibly by
increasing histone H3 acetylation in enteric neurons (67), leading to the alleviation of
constipation by the enhancement of vagal activity (68).

Furthermore, FOS intake facilitated decreases in the levels of ghrelin, glucose, and
insulin and an increase in the level of PYY (69). Xylo-oligosaccharide (XOS) and
inulin-type fructans can also increase the abundance of Bifidobacterium and the levels
of butyric acid and acetic acid for significant alleviation of chronic kidney disease and
ulcerative colitis (70–72). Therefore, although the bioavailability of herbs and functional
foods containing polysaccharides or oligosaccharides is low, SCFAs metabolized from
these two complex-carbohydrate components by beneficial bacteria might be key
bioactive molecules. Detecting SCFA levels might be much more important than
focusing on the bioavailability of herbs and functional foods containing these two
complex carbohydrates.

SCFAs such as propionic acid are biotransformed from carbohydrates by the gut
microbiota primarily via the succinate pathway, the acrylate pathway, and the pro-
panediol pathway. The succinate pathway is the primary pathway adopted by a
number of Bacteroidetes species to synthesize propionate (73). The succinate pathway
also exists in Ruminococcus flavefaciens, which generates succinate, but not propionate,
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and succinate is a precursor of propionate (74). The conversion of lactate to propionate
involves the succinate pathway and the acrylate pathway, as observed in Veillonella
spp. (via the succinate pathway) and Megasphaera spp. (via the acrylate pathway) (75).
Escherichia coli, Anaerostipes rhamnosivorans, and Bacteroides species can all degrade
deoxy sugars via the propanediol pathway (76, 77).

SCFAs can bind to G-protein-coupled receptors (GPCRs), mainly GPR41 (referred to
as FFAR3) and GPR43 (referred to as FFAR2), on intestinal epithelial cells; regulate
inflammatory responses (78, 79); and trigger the secretion of gut hormones, mainly
GLP-1 and PYY (80, 81). GPR41 and GPR43 have been discovered on several cells other
than intestinal cells, such as adipocytes, endocrine cells, and immune cells. SCFAs in the
bloodstream could reach these cells and bind to these SCFA-sensing receptors.

Saponins. Many poor-circulatory bioavailable herbs have been found to exert
pharmacological effects without SCFA production. Recently, increasing numbers of
bioactive molecules have been gradually discovered to be metabolized from these
functional herbs by the gut microbiota. Saponins are valuable bioactive components
that exhibit anti-inflammatory and anticancer activities. However, these molecules are
poorly absorbed into human blood, resulting in very low efficacy in human tissues
(82, 83).

The gut microbiota provides new opportunities to overcome the poor bioavailability
of saponins by transforming these compounds into beneficial metabolites (84, 85).
Among these saponin compounds, glycyrrhizin (GL), a typical and well-known triter-
penoid saponin extracted from licorice, has many valuable pharmacological effects,
such as antiviral (86), antioxidative (87), anticancer (88), and anti-inflammatory (89)
effects, and has been attracting our attention. It is also one of the few ingredients
whose fate is relatively clear after metabolism by specific gut microbiota. Based on this
discovery, glycyrrhetic acid 3-O-mono-�-D-glucuronide (GAMG), a metabolite with
higher bioavailability than the parent compound GL, has been commercially developed
through direct biotransformation in the food and pharmaceutical industries in Japan
(90–93). GL is not easily absorbed from the intestine into the blood when administered
orally to humans, as the structure, consisting of two glucuronide molecules, is strongly
polar (94). However, one distal glucuronic acid of GL can be hydrolyzed by �-D-
glucuronidase (�-GUS) derived from intestinal bacteria and then converted to GAMG,
which exhibits moderate membrane permeability with suitable molecular polarity,
possibly because of the sugar conjugation in this molecule, leading to an elevation in
bioavailability (95, 96). Gut bacteria, including Eubacterium sp. strain GLH, Ruminococcus
sp. strain PO1-3, and Clostridium innocuum ES24-06, play significant roles in the
modification of the chemical structure of GL to produce other relevant intestinally
absorbed metabolites (such as GAMG, 3�-hydroxyglycyrrhetic acid [3�-hydroxyGA],
and 3-oxo-glycyrrhetic acid [3-oxoGA]) with relatively strong pharmacological activities
(97) (Fig. 3). Timosaponin AIII (TA), another saponin compound, is metabolized to its
active metabolite sarsasapogenin (SG) in the intestine via cleavage of the glycosyl
moieties of TA by the gut microbiota to exert diverse pharmacological effects. Inter-
estingly, SG exhibits a higher anti-inflammatory effect than the parent compound (TA),
mainly via inhibition of NF-�B activation and proinflammatory cytokine (tumor necrosis
factor alpha [TNF-�], IL-1�, and IL-6) expression in LPS-stimulated macrophages (84).
Ginseng, whose pharmacological activities are primarily ascribed to ginseng saponins
(98), generally exhibits restorative effects, tonicity, and revitalization effects (99). An
unexpected phenomenon occurred in which ginseng and a ginseng-derived triterpe-
noid saponin, ginsenoside Rb1 (Rb1), exhibited different efficacies among individual
patients based on the different Rb1 hydrolysis potentials of the intestinal bacteria. The
results also indicated that Rb1 cannot be highly absorbed in its native forms to exert
health benefits after oral administration as a natural prodrug. Rb1 can be hydrolyzed to
its active form, 20-O-�-D-glucopyranosyl-20(S)-protopanaxadiol, by Rb1-hydrolyzing
intestinal bacteria via cleavage of the glycosyl moieties, allowing Rb1 to reach the
plasma and thereby exert its strong antimetastatic activity (100). These studies reveal
that parent saponins are deglycosylated into their relevant metabolites to exert bio-
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logical activities, which are mediated mainly by digestive enzyme secretion by the gut
microbiota (55).

Phenolic compounds. Phenolic compounds, classified as flavonoids and nonfla-
vonoids, are commonly detected in food plants. These compounds exhibit potent
antioxidative effects and affect human health. However, the bioavailability of these
compounds varies due to their vast structural diversity. A portion of phenolic com-
pounds is transformed by host-derived enzymes into bioactive metabolites, while the
others are not absorbed in the small intestine and may be fermented and transformed
by the gut microbiota (101).

Flavones are the major flavonoids, and apigenin is a flavone aglycone. Apigenin-7-
glucoside (A7G), which is the parent compound of apigenin, exhibits antimutagenic,
antiproliferative, and antiallergic effects (102). By applying A7G to germfree and
human-microbiota-associated rats, Hanske et al. (102) showed that relatively few A7G
metabolites were present in the urine and feces of germfree rats; the main A7G
metabolites in germfree and human-microbiota-associated rats were apigenin and
3-(4-hydroxyphenyl)propionic acid, respectively, and the compounds detected in the
blood samples of germfree rats were apigenin conjugates, while the compound
detected in blood samples of human-microbiota-associated rats was phloretin. These
results indicate that the human intestinal microbiota influenced A7G metabolism and
impacted the bioavailability of flavones. Anthocyanins, another type of flavonoid, have
been mistaken to be considerably less bioavailable than other flavonoid subclasses in
previous studies. Recent studies have suggested that anthocyanins are extremely
potent and that the bioavailability of these compounds has been underestimated (103).
Most of the ingested anthocyanins possibly arrive at the colon and are metabolized by
the colonic microbiota (104). By feeding ileostomy patients raspberries, blueberries, and
grapes, approximately 40% of the ingested anthocyanins were found to remain in the
ileal effluent (105–107). In healthy humans with intact colons, anthocyanins can enter
the colon and be deglycosylated. The dissociation of the C ring leads to the decom-
position of aglycones and the conversion of these molecules into several phenolic
constituents with additional effects (108).

FIG 3 Representative example with a promising application of pathway 1: metabolism of a parent compound (glycyrrhizin, for example) into value-added
compounds by regulation of the gut microbiota.
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As another example of a flavonoid compound, curcumin, which exhibits antioxidant,
anti-inflammatory, antiviral, antibacterial, and beneficial effects in the treatment of
some diseases, including cancers, cardiovascular diseases, diabetes, liver diseases, and
neurodegenerative diseases, has been receiving considerable attention (109–111). Due
to the �-diketones present in the structure of curcumin, this compound exhibits high
hydrophobicity and poor solubility and “bioavailability.” Therefore, a high daily intake
of curcumin is necessary to observe strong health-promoting effects. Unfortunately, a
high intake of curcumin may have harmful effects and reduce effectiveness, which has
limited the utilization of curcumin for illness prevention (112). The metabolites of
curcumin generated by gut bacteria, rather than the original forms of curcumin, exhibit
the biological effects. Curcumin is reported to be converted to demethylcurcumin and
bisdemethylcurcumin via methyl aryl ether cleavage caused by the human intestinal
bacterium Blautia sp. strain MRG-PMF1 (7). The evidence indicates that unabsorbed
curcumin can modulate the colonic microbiota indirectly, with beneficial effects on
multifarious diseases by producing additional bioavailable and bioactive molecules
(such as di-O-demethylcurcumin and dimethoxycurcumin) (113).

As a familiar example of nonflavonoid compounds, chlorogenic acids, which are
richly contained in coffee beans, can prevent the oxidation of human low-density
lipoprotein (LDL), which plays a pivotal role in the formation of atherosclerotic plaques
(101). Stalmach et al. indicated that chlorogenic acid absorption occurred in both the
small and large intestines but primarily in the large intestine (9). Most chlorogenic acids
arrived in the colon intact, and several bacteria produce a number of esterases for the
hydrolysis of phenol-quinic acid linkages (114). Released chlorogenic acids are easily
transformed by bacteria to their dihydro forms, such as dihydroferulic acid and dihy-
drocaffeic acid, and are then absorbed by the colonic epithelium. Next, dihydroferulic
acid, dihydroferulic acid-4=-O-sulfate, and dihydrocaffeic acid-3=-O-sulfate can enter the
circulation at high concentrations (115). Moreover, some other phenolic compounds
with low bioavailability, such as rosmarinic acid, eriodictyol, and some quercetin
derivatives, are fermented into absorbable and bioactive phenolic acids by the colon
microbiota, e.g., hydroxyphenylpropionic acids, phenylpropionic acids, and 3,4-
dihydroxyphenylacetic acid (54, 116). These bioactive microbial metabolites may be
absorbed and transported by the circulatory system to organs and tissues or exert their
effects in the intestinal lumen (54, 102, 116, 117).

All of the above-mentioned examples indicate that improvement of the gut micro-
biota is potentially a good strategy for the evaluation of the bioavailability of parent
substances. However, the metabolites of a large number of functional foods and drugs
with low bioavailability remain unknown. Furthermore, the characteristics of individual
gut microbes should be considered to identify methods to increase the bioavailability
of foods and drugs.

Specifically, oral formulations of chondroitin sulfate (CS) (a high-molecular-weight
glycosaminoglycan) have been used as drugs for a long time to treat osteoarthritis
(118). Regrettably, 1,200 mg/day has been required to observe the expected curative
properties in clinical trials (119). The absorption of CS in the small intestine is low, with
the bioavailability of CS estimated to be only 0 to 13% after oral administration
(118–120). CS is nondegradable in the stomach and small intestine and is mostly
removed or degraded by the colonic microbiota after oral administration (121). By
analyzing the degradation of CS by the intestinal microbiota in the distal gastrointes-
tinal (GI) tracts of six healthy subjects, Shang et al. found that each individual’s
CS-degrading bacteria (Bacteroides thetaiotaomicron J1, Bacteroides thetaiotaomicron
82, Bacteroides ovatus E3, and Clostridium hathewayi R4) had different degradation
effects, but 2-acetamido-2-deoxy-3-O-(�-D-gluco-4-Δ enepyranosyluronic acid)-4-O-
sulpho-D-galactose (Δ-UA-GalNAc4S) was the product in all cases (122). This study
indicated that although different individuals carried bacteria with the same function,
the species might determine the degradation rates of the drugs, leading to differences
in bioavailability. Therefore, we believe that the bioavailability of a food or drug is
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determined not simply by the substance itself but also by an individual’s functional gut
bacteria.

Pathway 2: Increase of Beneficial Metabolites from Parent Compounds by Specific
Gut Bacteria Enriched by Nonparent Compounds

Some medicinal components, such as alkaloids (berberine, etc.) and metformin,
cannot be transformed by the gut microbiota into SCFAs, but these compounds can
trigger an increase in the production of SCFAs from dietary carbohydrates by the gut
microbiota. Berberine, an extract from traditional Chinese herbal drugs such as Coptis
chinensis, previously regarded as an antibiotic drug for diarrhea in China, was recently
found to improve glucose tolerance in the treatment of T2DM. However, the clinical
efficacy of berberine could not be easily explained because of the low oral bioavail-
ability of this compound. Compared to berberine, metformin has high oral bioavail-
ability, and the mechanisms of action of metformin in the treatment of metabolic
diseases are well understood, i.e., the inhibition of hepatic gluconeogenesis via the
activation of AMP-activated protein kinase (AMPK). Recent studies have indicated that
the intestinal microbiota has an important effect on the efficacy of metformin. Met-
formin and berberine exhibit contrasting effects on HFD-induced alterations of the
composition of the intestinal microbiota. Putative SCFA-producing bacteria, including
Allobaculum, Bacteroides, Blautia, Butyricicoccus, and Phascolarctobacterium species,
were enriched by berberine and metformin (123). Interestingly, some types of SCFAs
could even trigger the production of other types of SCFAs or organic acids by the gut
microbiota. The addition of monovalerin (MV) and trivalerin (TV) to an HFD improved
not only valeric acid levels but also acetic acid levels in the brain. Although the
increment of valeric acid was considered to have been released from the delivered
esters, increased amounts of acetic acid, which did not originate from MV or TV, were
also observed in the serum and liver in both the MV and TV groups. However, MV and
TV tended to decrease the concentrations of acetic acid in the cecum, which indicated
that cecal acetate could be transferred to the brain. Furthermore, acetic acid levels in
the brain were notably negatively correlated with the abundances of TM7, the S24-7
family, and rc4-4 and positively correlated with the abundances of Anaeroplasma and
Tenericutes in the cecal microbiota. These results implied that the promotion of acetate
levels in the brain might be traced back to the microbial alteration in the cecum
induced by MV and TV (124).

In summary, several studies have shown that the extracts of some drugs and
functional foods exhibit poor bioavailability but strong effects on host health. Nonpar-
ent compounds can enhance biological effects by regulating the gut microbiota to
metabolize parent compounds rather than having a direct impact on the host. Fur-
thermore, the functions of some bioactive molecules have sometimes originated from
the metabolites of the parent compounds produced by beneficial bacteria, such as
polysaccharides and oligosaccharides, rather than from the parent compounds them-
selves. However, bioactive effects can frequently be detected only after the intake of
beneficial foods or drugs. To date, we have seldom been able to determine whether
beneficial molecules exert their effects directly or indirectly via metabolism by the gut
microbiota. Therefore, it is not easy to distinguish between pathways 1 and 2. In our
opinion, it is necessary to identify therapeutic molecules via metabolomics studies and
correlation analysis of each separate metabolite with the host’s phenotype and try to
increase the distribution of these molecules in the bloodstream.

Pathway 3: Decrease of Detrimental Metabolites from Parent Compounds via
Modulation of the Gut Microbiota by Nonparent Compounds

In addition to the upregulation of beneficial molecules by modulating the gut
microbiota, downregulation of the absorption of detrimental molecules by the micro-
biota could also be beneficial for human health. Detrimental microbes also interact with
the host via a number of predictable pathways.

Zhang et al. Microbiology and Molecular Biology Reviews

June 2020 Volume 84 Issue 2 e00072-19 mmbr.asm.org 16

https://mmbr.asm.org


Some foods, such as a red-meat-rich diet, can induce the generation of harmful
molecules by the gut microbiota, such as TMA/TMAO and bile acid/cholesterol. Increas-
ing evidence indicates that phenolic phytochemicals with low bioavailability may
reduce the levels of harmful compounds, primarily via remodeling of the gut microbi-
ota. TMA, derived from the degradation of choline and L-carnitine by the gut microbi-
ota, is absorbed into the bloodstream and then rapidly oxidized to TMAO by flavin-
containing monooxygenase 3 (FMO3), which is a hepatic enzyme (52, 125). Resveratrol
(a natural phenolic compound) reduces the synthesis of TMA and TMAO by reshaping
the gut microbiota. A genus-level analysis indicated that resveratrol increased the
relative abundances of Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia in
mice. Simultaneously, resveratrol administration caused declines in the relative abun-
dances of Prevotella and Ruminococcaceae and in the synthesis of TMA and TMAO (126).
In addition to natural drugs, dietary fiber also reduces TMAO levels by altering the gut
microbiome. A study demonstrated that dietary fiber feeding reshaped the intestinal
microbial ecology; enhanced the growth of Akkermansia and Bifidobacterium, etc.; and
restrained the growth of harmful species to reduce TMA and TMAO metabolism via
remodeling of the gut microbiota structure in mice (127). Furthermore, some bioactive
molecules from foods, such as allicin, also influence TMA and TMAO production (128).

Some intestinal bacteria metabolize primary bile acids and produce secondary bile
acids, which can lead to dysbiosis of glycometabolism and lipid metabolism after
excessive accumulation in human serum (129). K. Han et al. discovered that the
coadministration of a Scutellaria baicalensis extract and metformin has a synergetic
cholesterol-lowering effect in rats by the excretion of bile acids through feces (130).
Excess cholesterol is discharged into the intestinal lumen by primary bile acid secretion.
The abundances of some beneficial bacteria in the intestinal tract were increased due
to this combination treatment, including Lactobacillus and Bacteroides, which may
promote the deconjugation of bile acids that eventually failed to be reabsorbed in the
blood. In contrast, Clostridium and Enterobacter showed the opposite effect (130).
Rhizoma coptidis alkaloids, which contain berberine, coptisine, palmatine, and epiber-
berine, clearly enhanced the abundances of Sporobacter termitidis, Alcaligenes faecalis,
and Akkermansia muciniphila in the intestinal tracts of fed mice. However, the growth
of Escherichia coli, Desulfovibrio sp. strain C21_c20, and Parabacteroides distasonis was
inhibited, which promoted the deconjugation of bile acids to reduce cholesterol levels
in the blood (131). Therefore, R. coptidis alkaloids and metformin can not only trigger
an increase in the production of SCFAs by enriching a group of SCFA-producing gut
bacteria but also reduce the absorption of harmful substances by the body via
regulation of the gut microbiota. Furthermore, a lignin-rich fraction of brewer’s spent
grain (BSG), as a special dietary fiber containing �-glucan and arabinoxylan, could also
promote the deconjugation of bile acids (132).

LPSs, which are membrane components of Gram-negative bacteria, are another
class of detrimental substances that are not intestinal metabolites. In 2018, Zhao et al.
revealed that dietary fiber intake inhibited the growth of potentially detrimental
bacteria and reduced LPS levels but enriched SCFA-producing bacteria in T2DM pa-
tients (18). Lopez et al. indicated that genistein, as a dietary bioactive compound in soy,
can regulate the intestinal microbiota in HFD-fed mice by increasing the abundances of
the genera Prevotella and Akkermansia. These increases resulted in decreases in circu-
lating levels of LPS and reduced metabolic endotoxemia (133). In addition, many other
harmful metabolites in the bloodstream, such as microbiome-generated indoxyl sulfate
and p-cresol sulfate, can be reduced by remodeling the gut microbiota in patients with
chronic renal disease (134, 135).

In summary, functional components can reduce the production of harmful intestinal
metabolites by remodeling the intestinal microbiota. To fully understand bioavailability,
it is essential to take into account the declining levels of harmful bioavailable mole-
cules. Therefore, a reduction in the bioavailability of detrimental molecules can also
alleviate metabolic diseases. In many cases, some functional foods or drugs can not
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only increase the abundance of beneficial bacteria (frequently SCFA producers) but also
decrease the abundance of detrimental bacteria to improve various diseases.

Pathway 4: Inhibition of Specific Gut Bacteria Transforming Parent Compounds
into Inactive Forms by Nonparent Compounds

In pathway 1, we describe a group of intestinal bacteria that can transform the
parent inactive components into highly beneficial bioactive and absorbable com-
pounds. Conversely, the degradation of some functional components in drugs or foods
by specific intestinal bacteria can decrease the bioavailability of these compounds. In
contrast to the strategy for the enrichment of beneficial bacteria in pathway 1, effective
methods to inhibit intestinal bacteria that degrade bioactive parent drugs might
increase the bioavailability of these drugs.

After oral administration, drugs experience first-pass metabolism in the gut and
liver, which mostly affects the outcomes and adverse effects of drugs. Many drugs enter
the intestine and are metabolized by the gut microbiota, leading to reduced efficacy.
For example, Zimmermann et al. found that among eight bacterial species representing
five dominant phyla in the mammalian gut microbiota, Bacteroides thetaiotaomicron
and B. ovatus show the highest metabolic activity to convert BRV to BVU (1), while the
latter can interact with some other drugs and trigger fatal effects. Sorivudine (SRV),
which is structurally similar to BRV, can be slowly converted to BVU by B. thetaiotao-
micron. In addition, B. thetaiotaomicron can also participate in a diltiazem deacetylation
reaction generating desacetyldiltiazem (2). Besides, sulindac is reduced by the intestinal
microbiota to sulindac sulfide (136). Digoxin can be converted to dihydrodigoxin and
dihydrodigoxigenin in vitro. These derivatives result in decreased cardiac activity (137).
Some studies have illustrated that some bonds can be transformed by enzymes carried by
specific gut bacteria. For example, the azo bond of sulfasalazine is reduced by colonic
bacterial azoreductases to form mesalazine and sulfapyridine (138, 139). The absorption of
sulfapyridine in the colon can result in some adverse effects, such as nausea, skin rash,
headache, dizziness, and decreased appetite (140). Nitrazepam experiences a nitroreduc-
tion catalyzed by gut bacterial enzymes, but the products of this reaction have teratogenic
effects (141). The intestinal microbiota is mainly involved in a modification in which
zonisamide is primarily converted to 2-sulfamoylacetyl-phenol by the reduction of the
benzisoxazole ring (142).

Another example tactfully demonstrated the effects of the gut microbiota on the
degradation of active parent drugs into inactive components. Amlodipine, one of the most
frequently prescribed drugs for the treatment of hypertension, is absorbed in the GI tract,
with a bioavailability of approximately 60% after oral administration (143).

Some gut microbiota-targeted methods have been developed to improve bioavail-
ability. It has been found that coadministration of amlodipine with antibiotics resulted
in increased amlodipine absorption in the GI tract. Researchers found that amlodipine
could be metabolized by intestinal microbial enzymes and yield the major pyridine
metabolite, which suggested that the intestinal microbiota is associated with the
metabolism of amlodipine. Furthermore, coadministration of amlodipine and antibiot-
ics increased the human plasma concentration of amlodipine to almost twice that of
the amlodipine monotherapy group (144). The use of antibiotics could change the
intestinal microbiota, leading to metabolic changes in the coadministered antihyper-
tension drugs. This finding strongly indicated that the gut microbiota might affect the
pharmacokinetics of antihypertensive drugs. However, antibiotics have an associated
risk of dysregulation of the gut microbiota (145, 146), which limits the use of these
compounds to increase the bioavailability of amlodipine. Compared with amlodipine
monotherapy, coadministration with Lactobacillus plantarum IS-10506 in rabbits signif-
icantly enhanced the amlodipine concentration. The authors speculated that L. plan-
tarum IS-10506 could enhance red blood cells and hematocrit, leading to a lower
sedimentation rate and increased levels of plasma proteins, which bind amlodipine
(147). In addition, a live bacterial suspension of the probiotic Escherichia coli Nissle 1917
enhanced the bioavailability of amiodarone, which is an antiarrhythmic drug, in rats
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(148), and mixed cultures of Lactobacillus acidophilus, Bifidobacterium lactis, and Lac-
tobacillus rhamnosus increased the bioavailability of gliclazide, an antidiabetic drug, in
diabetic rats (149). Beneficial bacteria can limit the expansion of competing opportu-
nistic pathogens (150, 151). Thus, in our opinion, this improvement in bioavailability
might be associated with a decreased abundance of drug-degrading bacteria due to
competition pressure from beneficial bacteria.

Prebiotics are also able to modulate the gut microbiota. The use of prebiotics has
also been reported to enhance the absorption of some parent compounds. For
example, the coadministration of genistin and FOS improved the absorption of genis-
tin, leading to this compound reaching its target tissues, such as bone, with high
effectiveness (152). However, the underlying mechanism has not been explained.

In addition, gut microbes can interact with receptors in the liver and other organs
via the corresponding metabolites. Indoles, which are microbial tryptophan metabo-
lites, have been shown to induce some cytochrome P450s, which are responsible for
the metabolism of most therapeutic drugs and play vital roles in bioavailability and
drug-drug interactions via an aryl hydrocarbon receptor-mediated mechanism in the
liver. Furthermore, antibiotics decreased the hepatic expression and enzymatic activity
of cytochrome P450 3a (153). Regardless of the direct (in the intestine) or indirect (in the
liver) influence on first-pass metabolism, the gut microbiota might play significant roles
in these processes.

Taken together, these results show that antibiotics, beneficial bacteria, and prebi-
otics are able to increase the absorption of some oral drugs by inhibiting the abun-
dance of drug-degrading bacteria.

REDEFINITION AND IMPROVEMENT OF BIOAVAILABILITY

To address the perplexingly low bioavailability of pharmaceuticals and functional
foods, various strategies have been carried out to promote bioavailability. However,
high bioavailability frequently does not lead to health improvements. On the other
hand, despite poor bioavailability, some drugs or functional foods continue to exhibit
strong therapeutic effects. Thus, the mechanisms by which these substances function
in vivo are puzzling to researchers. Recently, the correlation of gut microbiota dysbiosis
and the occurrence and progression of a series of diseases was gradually verified. Poor
bioavailability of drugs or foods might provide an opportunity for cross talk among
these nonabsorbable components and bacteria in both the small and large intestines.
Thus, determining whether such cross talk has a significant effect on the biotransfor-
mation of these substances with low bioavailability is of great interest. This review
demonstrates that four pathways associated with these medicines or foods with low
bioavailability determine the effects of these substances aided by the gut microbiota.
First, the functional components derived from these drugs or foods by the gut
microbiota exhibit key effects on the improvement of health. In other words, the high
availability of these functional metabolites successfully overcomes the low availability
of the parent substances. Second, many drugs or functional foods can modulate the
structure and function of the gut microbiota and facilitate the production of beneficial
metabolites from daily nutrient substances via the gut microbiota. Thus, highly bio-
available beneficial components (SCFAs, etc.) metabolized from healthy foods consumed
daily (dietary fiber, etc.), which are different from the investigated drugs or functional foods,
by the improved intestinal microbiota play key roles in health promotion. Third, the
improved gut microbiota modulated by drugs or functional foods can downregulate the
production of some harmful molecules metabolized from unhealthy foods (dietary choline,
etc.) by the gut microbiota. We further propose that the understanding of bioavailability
can be expanded to include the downregulation of the availability of detrimental metab-
olites. Thus, in addition to the enhancement of the bioavailability of beneficial components,
inhibition of the bioavailability of detrimental components might be an effective method
for the promotion of human health. Fourth, the “binding partner” approach for food or
drugs and targeted inhibitors can be considered to improve bioavailability and therapeutic
effects. Targeted inhibitory substances in the intestine specifically inhibit bacterial degra-
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dation of functional components, allowing functional components to “escape” degradation
by the gut microbiota and enter the circulatory system with higher absorption. This
approach will facilitate developmental breakthroughs to improve the bioavailability of
drugs and foods that could be degraded by the intestinal microbiota. Of course, we also
need to consider the possible interactions between the two substances and the side effects
on the organisms.

Regardless of the pathways mentioned above, gut microbes are effective modulators of
the bioavailability of these pharmaceuticals or foods. For example, dietary fiber can be
directly metabolized into biologically active substances, i.e., substances that have biological
effects on the enhancement of the levels of SCFAs, which might be derived from dietary
carbohydrates via the enrichment of SCFA producers. On the other hand, based on the
functions of the gut microbiota, dietary fiber can also reduce TMA, TMAO, and LPS
metabolism by remodeling the gut microbiota structure, which suggests that pathways 1
and 3 play important roles in the bioavailability-promoting effects of dietary fiber (18, 127).
Metformin, the exact pharmacological mechanism of which is unknown, can also increase
the abundance of SCFA producers. Additionally, metformin can reduce the levels of
secondary bile acids, which implies that metformin can have beneficial effects via both
pathways 2 and 3 (123, 130). Therefore, when discussing the bioavailability of components,
we should pay attention to various bioavailability-promoting pathways based on the
multidimensional effects of the gut microbiota. Importantly, even if we find that some
water extracts or crude extracts of functional foods or drugs have biological effects, there
is a strong possibility that these extracts themselves do not exhibit the effects. Instead, it is
likely that small bioactive substances produced by the gut microbiota play roles in these
biological processes. Simultaneously, these phenomena also remind us that we cannot be
satisfied with the biological effects of crude extracts, and we should study the small-
molecule bioactive substances that enter the bloodstream to improve the bioavailability
and, ultimately, the therapeutic effects of these molecules. These substances can be
extracted and used in the pharmaceutical industry.

In addition, almost all traditional Chinese medicines (TCMs) have poor bioavailabil-
ity, so the medical effects of these medicines cannot be easily explained based on
Western medicine. However, TCMs have helped Asian doctors cure patients for thou-
sands of years. Some unknown mechanisms might play important roles in the thera-
peutic processes. The effects of the human commensal microbiota may explain the
mechanisms underlying these processes and help us understand the effects of TCMs.

Notably, in pathway 4, some modulators of the gut microbiota may be used for the
downregulation of drug-degrading bacteria to both elevate the bioavailability and
reduce the side effects of parent drugs. Furthermore, some microbial metabolites might
induce cytochrome P450s and decrease first-pass metabolism in the liver.

In addition to the in vivo (1), in vitro (2), and human (8) models mentioned above,
some other models, such as a simulator of the human intestinal tract (154, 155),
continuous-culture systems (156), a GI-targeted release model (extended or immediate
release) (157), and an in vitro culture combination of key functional strains, might be
potential tools to illustrate the roles of the gut microbiota in bioavailability. In this
review, bioavailability can be improved by either increasing the abundance of benefi-
cial gut bacteria or decreasing the concentration of detrimental bacteria. Some poten-
tial methods, in our opinion, may be launched. First, beneficial metabolites from parent
or nonparent compounds by the gut bacteria in pathways 1 and 2 can be produced via in
vitro fermentation or by chemical synthesis for direct administration. Second, targeted
beneficial bacteria for directly improving bioavailability need to be identified according to
studies on the cross talk of these bacteria and the parent compounds in pathways 1 and
2. The isolation, culture, and transplantation of these beneficial bacteria might be a
promising method. On the other hand, although targeted inhibition of the detrimental
bacteria in pathways 3 and 4 is difficult, the utilization of some competitive beneficial
bacteria can be expected. Third, prebiotics can also be used to enrich beneficial bacteria in
pathways 1 and 2 and thereafter inhibit detrimental bacteria in pathways 3 and 4. Last,
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there are broad prospects in using engineered bacteria harboring specific genes to produce
beneficial metabolites to be used in pathways 1 and 2.

In summary, based on the interactions between drugs or functional foods and the
gut microbiota, a redefinition of bioavailability will provide novel insights into the roles
of many medicines or functional foods in human health. The modulation of the
structure of the gut microbiota will be a novel strategy for the promotion of bioavail-
ability, the alleviation of side effects, and the discovery and design of novel pharma-
ceuticals (Fig. 4).
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